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Abstract 

From the classification of (three-dimensional) lattices 
into the 14 Bravais types, the finer classifications into 
the 44 Niggli characters and 24 Delaunay sorts are con- 
sidered. The last two divisions are mutually incompatible 
and the Niggli characters show a disturbing 'asymmetry' 
with respect to the conventional parameters. The aim 
of the paper is to find a common subdivision of both 
the Niggli characters and Delaunay sorts that reveals no 
'asymmetry'and is crystallographically meaningful. The 
first attempt based on separating the non-sharp inequal- 
ities (<__) into sharp inequalities (<) and equalities (=) 
in the systems defining the Niggli characters removed 
only the 'asymmetry', whereas the incompatibility with 
the Delaunay sorts remained. The second approach may 
be called the hyperfaces idea. To any lattice there 
are attached several points in E 5, its Buerger points. 
These Buerger points lie in two convex five-dimensional 
hyperpolyhedra J2 +, J2-. The division of lattices into 
classes is determined by the distribution of their Buerger 
points along the vertices, edges, faces, three- and four- 
dimensional hyperfaces and the interior of g2 + and ~Q-. 
The resulting classes are called genera. There are 127 
of them. They form a subdivision of both the Delau- 
nay sorts and the Niggli characters (and, consequently, 
also of the Bravais types) and their parameter ranges 
are open. Genera stand for a remarkably strong bond 
between lattices. The lattices belonging to the same 
genus agree in a series of important crystallographic 
properties. Genera are explicitly described by systems 
of linear inequalities. The five-dimensional geometrical 
objects obtained in this way are illustrated by their three- 
dimensional cross sections. From these illustrations, a 
suitable notation of the genera was derived. Extensive 
tables enable the determination of the genus of a given 
lattice. 

1. Introduction 

If one wants to get an overview over a large (maybe 
infinite) set of elements, it is helpful to classify the 
elements into classes, also called types, families, sys- 
tems, sorts etc. Classification means a partition of the 
set such that each element belongs to exactly one of 
the classes, i.e. the elements must obey the well known 
equivalence relations. Especially useful is a classification 

of an infinite set if the number of classes is finite and if 
the elements belonging to one and the same class have 
certain properties in common. 

(i) The classification of crystal lattices into the 14 
Bravais types, often called Bravais lattices, is well 
known. Less known but also of interest are the finer 
classifications of lattices into the 44 Niggli characters 
(Gitterarten; Niggli, 1928) and into the 24 Delaunay 
sorts (symmetrische Sorten; Delaunay, 1933a,b). Both 
the finer classifications subdivide the Bravais types but 
are incompatible with each other. This means that lat- 
tices of the same character may belong to different 
Delaunay sorts and lattices of the same Delaunay sort 
may belong to different Niggli characters. Burzlaff & 
Zimmermann (1985) have observed this and noted that 
the correlation between the two classifications is rather 
low. 

(ii) It is not easy to describe the Niggli characters 
properly (de Wolff, 1988; de Wolff & Gruber, 1991; 
Gruber, 1992). Following the last author, we characterize 
any lattice by a unique point in E 5, its Niggli point (see 
the next section). Then, the division of lattices into the 
14 Bravais types means a division of the set /7 of all 
Niggli points into 14 classes. Any of these classes can be 
- as a subset of E 5 - partitioned into components, i.e. 
maximum connected subsets in the topological sense. 
It appears that these components correspond to the 
Niggli characters. Thus, the Niggli characters form ex 
definitione a subdivision of the Bravais types. However, 
when lattices are described by conventional parameters, 
the Niggli characters reveal a strange 'asymmetry'. For 
example, there are two hexagonal Niggli characters, no. 
12 when c/a > 1 and no. 22 when 0 < c/a < 1. 
Thus, one range of the parameter c/a is closed and the 
other open. We consider this situation unsatisfactory and 
shall make an attempt to remedy it in point (v) of this 
Introduction. 

(iii) A different point of view is taken in the definition 
of the Delaunay sorts. For each lattice, its Voronoi 
domain can be constructed. It is that region of space 
whose points are nearer to or at the same distance from 
a given lattice point P than any other lattice point. 
All Voronoi domains can be divided according to their 
shape into five classes, called Voronoi types (Delaunay, 
1933a,b): 

(I) cuboctahedron (14 faces, 36 edges, 24 vertices); 
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(II) elongated rhomb-dodecahedron (12 faces, 28 
edges, 18 vertices); 

(III) rhomb-dodecahedron (12 faces, 24 edges, 14 
vertices); 

(IV) hexagonal prism (8 faces, 18 edges, 12 vertices); 
(V) cube (6 faces, 12 edges, 8 vertices). 
Within the same Voronoi type, the symmetry of the 

Voronoi domain varies according to the symmetry of 
the lattice. Delaunay applied the reduction procedure of 
Selling (1874), which leads to four lattice vectors with 
a zero sum and obtuse or right angles. In this way, he 
obtained a classification of lattices into 24 classes, here 
called Delaunay sorts. They form a subdivision of the 
five Voronoi types as well as of the 14 Bravais types. 

(iv) Thus, we have two splittings of the Bravais types 
into finer classes: the 44 Niggli characters and the 24 
Delaunay sorts. According to the number of classes, 
it is not excluded that the Niggli characters form a 
subdivision of the Delaunay sorts. However, a look at 
Table 9.3.1 in International Tables for Crystallography 
(1995) (hereafter IT A) quickly shows a contradiction 
to this conjecture: the set of all triclinic lattices is 
distributed among three Delaunay sorts but there are two 
Niggli characters only. Later we shall see (Table 5 in this 
paper) that more often (i.e. in 17 cases) lattices of the 
same Delaunay sort belong to different Niggli characters 
whereas lattices of the same Niggli character belong to 
different Delaunay sorts in eight cases. In five cases, 
the Delaunay sort is identical with a Niggli character. 
We say that the Niggli characters and Delaunay sorts 
are incompatible. It is the aim of this paper to find 
a common subdivision of the Niggli characters and 
Delaunay sorts that is compatible with both, reveals no 
'asymmetry' and is crystallographically meaningful. The 
'brute-force' method to subdivide the Niggli characters 
and Delaunay sorts further with the only aim to remove 
the incompatibilities is possible, of course, but did not 
seem to be acceptable to us. (More details about this 
division are in the section Building stones.) 

(v) In order to remove the disturbing 'asymmetry' of 
the Niggli characters and possibly to reduce or remove 
the number of cases where the lattices of the same 
Niggli character belong.to different Delaunay sorts, we 
shall try to use the principle of separating the non-sharp 
inequalities (<) into sharp inequalities (<) and equalities 
(=). The set H c of all Niggli points of a particular Niggli 
character C is a convex k-dimensional (0 < k < 5) 
hyperpolyhedron and can be described by a system S c of 
linear equalities and inequalities between the coordinates 
of the Niggli points (Gruber, 1992). According to the 
above principle, any non-sharp inequality (<) in the 
system S c divides this system into two subsystems Sc~ 
and Sc2, the subsystem Scl having < in the place where 
< was in the system S c and Sc2 having =. Repeating, 
if necessary, this procedure for the systems Sc~, Sc2 _, we 
divide eventually S c into partial subsystems containing 
only equalities (=) and sharp inequalities (<) but not 

non-sharp inequalities (<_). Doing this for all particular 
Niggli characters, we finally get a division of the set H 
of all Niggli points (that is a division of all lattices) into 
105 classes with open parameter ranges. According to 
their definition, they form a subdivision of the Niggli 
characters. As far as the Delaunay sorts are concerned, 
we have succeeded only for lattices with Niggli cells 
with o~,/3, ~' _> 90 °. Among the remaining lattices, there 
exist classes of the new division with lattices belonging 
to different Delaunay sorts. Thus, the division is not 
compatible with the Delaunay sorts and we have to 
follow another principle. 

(vi) Our further approach will be based on the geo- 
metrical shape of the set H of all Niggli points. Before 
going into details, we introduce the notions that will be 
needed. 

2. Description and representation of a lattice 

We say that the cell N determined by a primitive basis 

a,b ,c  (1) 

of the lattice L is a Buerger cell of L if 

a + b + c -- minimum 

on the set of all primitive cells of L. We say that N is 
a Niggli cell of the lattice L if 

(i) N is a Buerger cell of L and 
(ii) 

190 ° - c~l + 190 ° - /31 + 190 ° - ~l = maximum (2) 

on the set of all Buerger cells of L (Gruber, 1989). Both 
cells are primitive. The Niggli cell is unique with regard 
to its shape (but can occur in different orientations in 
the lattice) whereas a Buerger cell may be ambiguous 
(Gruber, 1973). We say that 

[u,v,x,y,z] E E 5 (3) 

is a Niggli point of the lattice L if there exists a Niggli 
cell N of L and a sequence of vectors (1) in such a way 
that: 

(i) N is determined by the vectors (1); 
(ii) 

u - a 2/c 2, v = b 2/c 2, 

x : 2b.  C/C 2, y : 2a.  C/C 2, Z = 2a.  b/c2; 

(iii) 
u < v _< 1, (4) 

either x > 0 ,  y > 0 ,  z > 0  
(5) 

or x<_0, y<__0, z<_0, 

if u = v then Ixl ~ lyl, (6) 
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if v = 1 then lYl ~ Izl. (7) 

Every lattice has exactly one Niggli point. We shall 
use it a lways for the description of the lattice. At present, 
we use the Niggli point also for the lattice representation 
but later lattices will be represented in more complicated 
ways. The Niggli point can be recognized by means of 
this 

Criterion. The point (3) is a Niggli point of a lattice 
if and only if it fulfils one of  the two following systems 
of  inequalities: 

( i )  
u < v _< 1, (8) 

O < x < v ,  O < y < u ,  O < z < u ,  

i f  b / = k '  

if x = v  

if z =  u 

then x < _ y ,  if v =  1 then y<__z, 

then z_<2y,  if y = u  then z_<2x,  

then y <_ 2x. 

(ii) 
0 < u < v < l ,  (9) 

- v < x < O ,  - u < y < O ,  - u < z < O ,  

O < u + v + x + y + z ,  

if u = v  then y _ < x ,  if v -  1 then 

i f  x - - - v  then z = 0 ,  if y = - u  then 

if z = - u  then y = 0 ,  

if u + v + x + y + z = O  then u + y < v + x  

z < y ,  

Z--O, 

(Eisenstein, 1851; Niggli, 1928; IT A). The Niggli point 
of a given lattice can be found by means of an algorithm 
shown in Appendix A. 

If  the point (3) fulfils the system (8), we speak about 
a positive Niggli point, if it fulfils the system (9) about 
a non-positive Niggli point. The set of  all Niggli points 
is denoted H ,  the set of all positive Niggli points /7 + 
and the set of all non-positive Niggli points H - .  Thus, 
H = H + t A H  - ,  H + N H  - = O. 

Table 1. Notation and coordinates of points in E 5 

(a) Vertices of the hyperpolyhedra .£2 + and J2- 

~'2 + ~"2- 

o = [o, o, o, o, o] o = [o, o, o, o, Ol 
1 = [0, l, 0,0, 0l 1 = [0, 1,0,0,01 
2 = [1, 1,0,0,0] 2 = [1, 1,0, 0, 0] 
3 = [0, 1, 1,0,0] :3 = [0, 1,-1,0,0] 
4 = [1, 1,0, 0, 11 ,1 = [1, 1,0, 0, -11 
5 = [1, 1,0, 1,01 5 = [1, 1 ,0 , -1 ,0  l 
6 = [1, 1,0, l, 11 6 = [1, 1 ,0 . -1,-11 
7 = [1, 1, 1,0, 0] 7 = [1, 1,-1,0, 0] 
8 = [1, 1, 1,0, 11 8 = [1, 1, --1,0,  --1] 
9 = [1, 1, 1, 1,01 9 = [1, 1, --1, --1,0] 

10 : [1, 1, 1, 1, 1] 
(b) Other points of interest 

10 = [1, l , - 2 /3 , -2 /3 , -2 /31  
11 : [1, 1, 1/2, 1, 1] 11 = [1, 1 , -1 , -1 /2 , -1 /21  
12 : [1, 1, 1, 1/2, 1] 12 = [1, 1 , - 1 / 2 , - 1 / 2 , - 1 ]  

Both sets, ~Q+ and ~ - ,  are closed convex five- 
dimensional hyperpolyhedra,  J2 + with 11 and g?-  with 
10 vertices. Their coordinates and notation are given in 
Table 1. The common part of g2 + and X2- is the triangle 

[p,q, 0 ,0 ,0 ]  (O<_p<_q<_ 1) 

with the vertices 0, 1, 2. 
The boundary of l? + (or f 2 - )  consists of  vertices and 

k-dimensional hyperfaces (1 < k < 4). For our purposes, 
it is advantageous to take these hyperfaces open with 
respect to their dimension* so that any two hyperfaces 
of ~2 + (or £2-)  are disjoint. For formal reasons also the 
vertices and the interior of I? + (or .(2-) are considered 
hyperfaces (of the dimension 0 and 5, respectively). In 
this way, g2 + becomes a union of  115 and ~ -  of 119 
not overlapping hyperfaces.  Seven of them belong to 
both, ~ +  and f2 - ,  so that the set H of all hyperfaces 
has 227 elements . t  

Any hyperface is either a point in E 5 or a 
k-dimensional hyperpolyhedron (1 <_ k < 5) open 
with respect to its dimension. 

3.  G e o m e t r i c a l  r e l a t i o n s  

The sets H +, H -  are neither open nor closed. It is worth 
while to introduce ~ +  as the closure of  H + and £2- as 
the closure of H -  and denote ~Q = ~2 + tO/2-. Explicitly, 
S? + is the set of points (3) fulfilling 

4.  N o t a t i o n  o f  h y p e r f a c e s  

Any hyperface (as a subset of Es) can be described by 
a system of linear (in)equalities, for example,  

0--  u =  y =  z, (12) 

u <_ v <_ 1, (10) 

O < x < v ,  O < y < u ,  O < z < u  

and ~'2- the set of points (3) fulfilling 

u < v < 1, (11) 

--v<_x<_O, - - u < _ y < O ,  --U<__z<O, 

O < u + v + x + y + z  

SO that ~2 + N S2- 7~ (3. 

0 < x < v < l  

or 0 < u < v =  1, (13) 

* 1. e. straight segments without their end points, triangles without their 
sides and vertices etc. 
t in  detail, 1"2 + (.f?-) consists of 11 (10) vertices (three of them 
common), 31 (30) edges (three common), 39 (41) faces (one common), 
25 (28) bodies, 8 (9) four-dimensional hyperfaces and 1 (1) five- 
dimensional interior. This can be ascertained by standard methods 
of multidimensional analytical geometry. No mathematical difficulties 
arise. This concerns also some of the further statements that may seem 
rash at first sight. 
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l + u + x + y + z = O ,  

- 1  < x ,  - u < y ,  - u < z .  

We call these systems fundamental  systems. They 
are consequences of  the inequalities (10) or (11) that 
describe ~2 + or ~2-. Some of  them will appear explicitly 
later. 

Any of  the fundamental  systems contains either the 
equality u = 0 or one of  the four fol lowing inequalities: 

0 < u = v =  1 (index 1), 

0 < u = v <  1 ( index2) ,  
(14) 

O < u < v =  1 (index 3), 

0 < u < v <  1 (index 4). 

They will be distinguished by an index as indicated. 
In the first case, i.e. u = 0, we speak about a singular 

fundamental  system* and a singular hyperface. There are 
altogether 11 of  them but they have no importance for 
us containing no Niggli  points . t  

Since the five-dimensional space is not accessible to 
a direct view, we descend to three dimensions. For any 
u, v (0 < u < v < 1), we define the points F,v, . . . .  ~/'~v 
in E 3 according to Table 2. 

Now let us keep the values u, v (0 < u < v < 1) fixed. 
Then the system of  inequalities (10) [or (11)] defines 
a set Y2, + C E 3 (or S2~ C E3). These sets are three- 
dimensional  polyhedra, which can be seen in Figs. 1, 2, 3 
and 4. Their  vertices are described in Table 2. The shape 
of  ~,+ when u = v slightly differs from that when u < 
v. The same is true for Y2~. Let us take an arbitrary non- 
singular fundamental  system F [e.g. the system (13)] and 
denote the hyperface defined by it as h. With the values 
u, v kept fixed, the system F defines a certain subset h,,~ 
of  E 3. This set huv is a vertex or an open edge or an open 
face or the interior of  the polyhedron ~ +  or g2~ and can 
also be seen in one of  Figs. 1, 2, 3 and 4. Because of its 
shape, huv can be uniquely characterized by its vertices. 
In the case of  the system (13), these vertices are 

Kuv, Luv, Vuv. (15) 

Choosing different fixed values u, v, we get different 
vertices (15), nevertheless, the 'main parts' of their 
symbols~t remain the same (in our example K, L, V). 
Therefore, we shall denote the hyperface h by a sequence 
of  these 'main parts'  (in alphabetical order) adding as a 
subscript the index i (1 < i < 4), which indicates which 
alternative from (14) occurs in the system F. [Thus, the 
hyperface defined by the system (13) is denoted KLV3.] 

Conversely,  having such a symbol, for example 

J O r A O A S ~  2, (16) 

* Such a system is e.g. (12). 
t There are the points 0, 1, 3, 3, the o~n segments 0 1, 0 3, 1 3, 0 3, 
1 3 and the open triangles 0 1 3, 0 1 3 (see Table I). 
:~ I.e. when the subscripts u, v are deleted. 

Table 2. Points  in E 3 a n d  their  limit pos i t ions  in E 5 

The indices 1, 2, 3, 4 relate to the four cases in (14). The values u, v 
fulfil 0 < u < v < 1. See Figs. 1, 2, 3 and 4. 

Limit positions for the index 
Point 1 2 3 4 

Fur = [u/2, u, u] 11 0, 11 1, 11 0, 1, 11 
G~ = [u, u, u] I0 0, I0 I, I0 0, I, I0 
Hu~ = [v, u/2, u] 12 0, 12 3, 12 0, 3, 12 
J.~ = [v, u, u] I_0 0, I_0 3, I0 0, 3_, I0_ 
Ku~ = [ -v ,0 , -u ]  _a o, _s 3, 8 o, 3, 8 
L~v = [ - v , - u ,  0] 9 0, 9 3, 9 0, 3, 9 
0.~ = [0, 0, 0] 2 O, 2 1, 2 0,1, 2 
Q,,~ = [ -v , -u /2 , -u /2]  11 o, 11 3, 11 o, 3, 11 
R~ = [-v + u/2, -u /2 , -u]  12 0, 12 3, 12 0, 3, 12 
T~ = [-v + u/3, -2u/3, -2u/3] 10 0, 10 3, 10 0, 3, 10 
U~ = [O, -u, -u] g O, 6 1, 6 0,1, 
V ~ = [ - v + u , - u , - u ]  6 0, 6 3, 6 0,3, 6 
X.~=[-v, 0,0] 7 0, 7 3, 7 0,3, 7 
Y~ =[0 , -u ,  0] _5 0, 5 1, 5 0, 1, .~ 
Z.~ = [0, 0, -u] 4 0, 4 1, 4 0,1, ,] 
Fu~ = [0,0, u] 4 0, 4 1, 4 0, 1, 4 
A.~ = [O, u, u] 6 0, 6 1, 6 0,1, 6 
(0~ = [v, 0, u] 8 0, 8 3, 8 0, 3, 8 
Au~ = [O, u, O] 5 0, 5 1, 5 0,1, 5 
E.~ =[v, 0,0] 7 0, 7 3, 7 0, 3, 7 
qJ~ = [v,u, 0] 9 0, 9 3, 9 0, 3, 9 

we describe - following Fig. 2 and Table 2 - by means 
of inequalities the open hyperpolyhedron in E 3 with the 
vertices 

Juv, Ouv, F~v,A.v ,  6)uv, A . v , Z . v , ~ u v .  

In this way, we get the points (3) fulfilling 

0 < x < u ,  0 < y < u ,  0 < z < u .  (17) 

Then we add that inequality from (14) that corresponds 
to the index 2, i.e. 

O < u - v <  1. (18) 

Then (17) together with (18) form a fundamental  system 
that describes the hyperface denoted by the symbol (16). 

As can be expected, combining any vertex, edge, 
face and interior of  $2 + and g2~ with any admissible 
alternative from (14), we get the symbols of all non- 
singular hyperfaces. It can be easily checked that there 
are 216 of them, four belonging to ~ +  as well as to ~ - .  
When the 11 singular hyperfaces are added, the total 
number of  227 hyperfaces is gained. In this way, we 
can get a fairly clear impression of  what the hyperfaces 
look like and what their mutual relationships are. 

It may be asked what are the vertices (in Es) of a 
hyperface if its symbol is known. This may be answered 
by the following limit procedure. From the general 
condition 0 < u < v _< 1, three possibilities follow: 

(i) u ~ 0, v ~ 0, 
(ii) u ~ 0, v ~ 1, 
(iii) u ~ 1, v ~ 1. 
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Fig. I. Three-dimensional illustration of hypeffaces and genera with the index 1, i.e. when u = v = 1. The polyhedra ~?+, ~?~ are three- 
dimensional cross sections of the five-dimensional hyperpolyhedra f~+,  ~ - ,  supposing the values u, v are considered fixed. The points 
are described in Table 2, however, their symbols F.v ,  G., , ,  . . .  are simplified in the figure to F, G . . . .  for graphical reasons. Similarly 
in Figs. 2, 3 and 4. 
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Fig. 2. Three-dimensional illustration of hyperfaces and genera with the index 2, i.e. when 0 < u --  v < 1. 
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However ,  the l imi ta t ions  imposed  on the par t icular  al- 
ternat ives  in (14) a l low only  the fo l lowing  combina t ions :  

index 1: (iii), 
index 2: (i), (iii), 
index 3: (ii), (iii), 
index 4: (i), (ii), (iii). 

Thus,  for example ,  the point  K = [ - v ,  0, - u] taken 
as a point  in E 5 ( i .e .  as the point  [u, v , - v ,  0 , - u ] )  can 
approach  under  the condi t ion  of  the index 3 ei ther  the 
point  [0, 1, - 1, 0, 0] or the point  [1, 1, - 1, 0, - 1], that 
is e i ther  the vertex 3 or the vertex 8 but no others. 
We express  it by K 3 ~ 3, 8. These  l imit  posi t ions  are 

X 

L / j  Y 

Q 

V U 

U 

O 

y 

1" 

7 

A F G J 

/ i ..,.... 

r/l ......... " I / I . ."" 
/ I ,,'" 
/ !..'" .11 

, '  ...:L.-" 'r 
~.~>" A . . . . . . . . . .  x 

1 

Fig. 3. Three-dimensional illustration of hyperfaces and genera with the index 3, i.e. when 0 < u < v -- 1. 
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Fig. 4. Three-dimensional illustration of hyperfaces and genera with the index 4, i.e. when 0 < u < v < 1. 



B. GRUBER 511 

recorded in Table 2 for all four indices. According to 
this table, L 3 ~ 3, 9, V 3 ~ 3, 6, from which we deduce 
that the vertices of the hyperface KLV 3 are 3, 6, 8, 9. 

This procedure may be applied to all non-singular 
hyperfaces. The vertices of the singular hyperfaces must 
be gained directly from the fundamental systems. For 

;,¢xample, the vertices of the hyperface defined by the 
s y s t e m  (12) are 0, 1, 3. 

5. The hyperfaces idea 

The system H of all hyperfaces h stands for a decompo- 
sition of the set ~ into non-overlapping parts. The se t /7  
of all Niggli points is a subset of f2. Thus, the system of 
all intersections HN h (h E H)* forms a decomposition 
of H into non-overlapping parts. This division of the 
Niggli points induces back a division of lattices. Two 
lattices belong to the same equivalence class if their 
Niggli points lie in the same hyperface of 12 + or ~2-. 
This can be said also like this: 

Definition 1. We say that the lattices L1, L 2 belong to 
the same class if they agree in the distribution of their 
Niggli points.t 

This formulation shows the relationships with further 
definitions in a more transparent way. The division 
of lattices according to this definition consists of 67 
classes, which - unlike the Niggli characters - show 
no 'asymmetrical '  phenomena. In this point, we have 
succeeded. But the classes unfortunately do not form 
a subdivision of the Bravais types: there are even 27 
classes that violate the hierarchy. (For example, the Nig- 
gli points [0.8, 0.8, 0.3, 0.6, 0.8], [0.8, 0.8, 0.4, 0.5, 0.8] 
of the lattices L1, L 2 both lie in the hyperface J F A O  2, 
the lattice L I being mC whereas L 2 is aP.) 

It is clear that the hyperfaces idea must be refined. The 
best way to do it is to substitute the Niggli point with 
another unique point characterizing the lattice. Such a 
point could be derived, for example, from a cell differing 
from the Niggli cell in condition (2), which could be 
substituted by one of the following three conditions: 

190 ° - c~l + 190 ° - fl[ +. 190 ° - O'l = minimum, (19) 

surface of the cell = maximum, (20) 

surface of the cell = minimum, (21) 

always on the set of all Buerger cells of the lattice 
(Gruber, 1989). 

However, all these attempts failed leading to the same 
difficulties. Thus we shall abandon - though with some 
hesitation - the idea of representing the lattice by a 
unique point in E 5. 

* If tile void intersections are omitted. 
t Meaning that any hyperface from !t contains the same number (i.e. 
0 or 1) of Niggli points of L1 and L2. 

6. Buerger points 

The uniqueness of the Niggli point is a consequence of 
the uniqueness of the Niggli cell and the uniqueness of 
its description. Thus, we delete the condition (2) [or, 
possibly, one of the similar conditions (19), (20), (21)] 
and from the normalizing conditions (4), (5), (6), (7) 
keep only (4) and modify (5) to be symmetrical.* 

Thus, we say that (3) is a Buerger point of the lattice 
L if there exists a Buerger cell t  B of L and a sequence 
of vectors (1) in such a way that 

(i) B is determined by the vectors (1), 
(ii) 

u = a2/c e, v - b2/c  2, (22) 

x - - 2 b . c / c  2, y = 2 a . c / c  2, z - 2 a . b / c  2, 

(iii) 
u <_ v <_ 1, (23) 

either x_>0,  y > 0 ,  z > 0  
- (24) 

or x<__C, y_<0,  z < 0 .  

A Niggli point is a special case of the Buerger point. 
A lattice has at least one Buerger point but can have 18 
Buerger points.~/ Two lattices have a common Buerger 
point if and only if they are geometrically similar. Then 
they have all Buerger points in common. The Buerger 
points can be easily recognized. They are those points 
(3) from £2 that have u > 0. 

To determine one (unspecified) Buerger point of a 
given lattice L is easy. To find all Buerger points of L 
is more difficult. However, we need to know them only 
for constructing the final table of the division of lattices, 
not when using this table for determining the class to 
which a particular lattice L belongs. Then only the Niggli 
point of L must be known. Therefore, we postpone the 
discussion of how to find all Buerger points of a lattice 
to Appendix B. Now we can modify Definition 1. 

Definition 2. We say that the lattices L 1 , L 2 belong to 
the same class if they agree in the distribution of their 
Buerger points.§ 

[For example, let L be the set of lattices with the 
Niggli points (3) fulfilling 0 < 2x = y < z = u -- v < 1. 
Then any lattice from L has two Buerger points in 
the hyperface J F A O  2 and one Buerger point in the 
hyperface K U Z  2 but no Buerger points in the remaining 
hyperfaces. This distribution of Buerger points occurs 
only for lattices from L. Thus L forms a class according 
to Definition 2. It will be denoted later as FF2.] 

* Without (4) and (5), the number of new points would increase 
enormously. 
t Le. a cell fulfilling a + b + c = minimum on the set of all primitive 
cells of L. 
:~ How to prove rash statements like this that occur in many places in 
the following text is suggested in the section Proof. 
§ Meaning that any hyperface from H contains the same number (zero 
included) of the Buerger points of L t and L 2. 
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What are the properties of this classification of lat- 
tices? It consists of 115 classes, is a subdivision of the 
Bravais types and does not show any 'asymmetry'. In 
these points, Definition 2 has been successful. 

However, we also want the final division to be com 
patible with the Delaunay sorts and the Niggli characters, 
that is to be a subdivision of both of them. Here our 
task has not been accomplished. It turns out that five 
classes of lattices (according to Definition 2) violate 
the hierarchy with respect to the Delaunay sorts and 
another four classes with respect to the Niggli characters. 
Nevertheless, 106 out of the 115 classes (i .e.  92%) fit 
into both the Delaunay as well as the Niggli partitions. 
This suggests that the main direction of the reasoning 
was sensible and definiton 2 only needs to be completed 
by minor additional conditions. 

7. Body diagonals 
Let us look more closely at one of the classes that 
do not fit into the Delaunay sorts. The lattices of this 
particular class, say P, are characterized by Niggli points 
(3) fulfilling 

0 < u < v = l ,  y = z ,  (25) 

0 < x <  1, 0 < y < u .  

They belong to three Delaunay sorts, namely M 2, 
M 3 and M 5. This may be ascertained by means of the 
Delaunay reducing algorithm, his abstract tetrahedron 
and Fig. 12 of Delaunay (1933a,b). Asking about the 
condition for a lattice L of the class P to belong to M 2 
or M 3 or M 5, we find that it is the (in)equality x < y or 
x > y or x -- y, respectively, that relates to the Niggli 
point (3) of L. But the inequality x < y means the same 
a s  

I - a + b + c l  < l a -  b + c l ,  

which is an inequality between the lengths of two 
body diagonals of the Niggli cell of L. Following this 
discussion in detail, we find that L belongs to M 2 or to 
M 3 or to M 5 according to whether the number of the 
shortest diagonals of the Niggli cell of L is 1, 2 or 3, 
respectively. 

Similar relationships can be found also in the four 
remaining classes that do not fit into the Delaunay 
sorts. Therefore, we shall complete definition 2 by the 
requirement that the lattices of the same class agree in 
the number of the shortest body diagonals of the Niggli 
cells. 

There is, of course, a question whether this additional 
condition does not cause a splitting of some classes 
where it is not necessary, that is which do fit into the 
Delaunay sorts. A thorough analysis shows that this is 
not the case. 

8. Niggli bases 
Now let us draw our attention to the four classes of 
lattices (according to Definition 2) that do not fit into the 
Niggli characters. One of these classes - let us denote 
it Q - may be characterized by the following sy.stern of 
inequalities: 

u = v =  1, 2 + x + y + z = O ,  (26) 

x = y or y = z, - 1 < z < - 2 / 3 ,  

which hold for the Niggli points (3) of the lattices from 
Q (and only for them). These lattices belong partly to 
the Niggli character 6, partly to the Niggli character 7. 

Looking for some phenomenon that would enable us 
to distinguish these two cases, we find after some quest 
that it may be the bases leading to the Niggli point. 

We say that the sequence of vectors (1) is a Niggli 
basis of the lattice L if 

(i) it is a basis of L, and 
(ii) the point (3) derived from (1) by means of the 

relations (22) is a Niggli point of L. 
The Niggli basis of a lattice is not unique unlike the 

Niggli point. 
Let us return to our example and ask about the system 

of all Niggli bases of a lattice L from the class Q. It 
can be shown (see Appendix C) that this system always 
contains the bases 

+(a,b,c),  +(b,a ,  - s ) ,  

=t=(c, - s , a ) ,  J= ( - s , c , b ) ,  

where (1) is an arbitrary Niggli basis of L and s = 
a + b + c. Besides, this system contains either the bases 

+ (b ,a ,c) ,  J= (a,b, - s), 
(27a) 

+ ( c ,  - s , b ) ,  + ( - s , c , a )  

or the bases 

+ (a,c,b), + (c,a, - s ) ,  
(27b) 

± ( b , -  s,a), + ( - s ,b ,c )  

and that is all. In the case (27a), the lattice L belongs to 
the Niggli character 6 [and in (26) x = y], in the case 
(27b) to the Niggli character 7 [with y - z in (26)]. 

A similar situation occurs also in the three remaining 
classes that do not fit into the Niggli characters. There- 
fore, we complete Definition 2 by a further requirement, 
namely that the lattices L~, L 2 agree in the systems 
of all Niggli bases. Again, we have to ask whether an 
unnecessary splitting of classes that do fit into the Niggli 
characters will occur. Actually, this is not the case. 

Like the Buerger points, we shall need the systems 
of all Niggli bases of a lattice only for constructing the 
final division of lattices, not when practically seeking 
the class to which a particular lattice belongs. Therefore, 
we shall give some hints how to find these systems in 
Appendix C. 
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9. Genera 

Definition 3 (final). We say that the lattices L I and L 2 
belong to the same class, called a genus, if they agree 

(i) in the distribution of their Buerger points,* 
(ii) in the number of the shortest body diagonals of 

their Niggli cells, and 
(iii) in the systems of all their Niggli bases.t 
This division of lattices is a subdivision of both 

the Delaunay sorts of symmetry and the Niggli lattice 
characters (and, consequently, also of the Bravais types). 
It consists of 127 classes (genera) and is free from 
'asymmetrical' phenomena. All parameter ranges are 
open. We consider it the final division and take it for 
the solution of our problem. 

10. Notation of genera 

If L is a set of lattices then the set of Niggli points of all 
lattices from L is called the Niggli image of L. Thus, we 
can speak about the Niggli image of a genus. Conversely, 
this Niggli image defines the genus uniquely. Since the 
Niggli images of genera are geometrical objects (subsets 
of Es), we can describe genera by describing these 
objects. 

The Niggli image of any genus is a part of a hyper- 
face. It is either a point in E 5 or a convex hyperpoly- 
hedron open with respect to its dimension k (1 < k <__ 
5) or, but only in four cases, a union of at most three 
such hyperpolyhedra. All these sets can be determined 
by 'fundamental systems' of inequalities, similarly to 
the hyperfaces. 

Thus, we can describe the Niggli images of genera 
almost in the same way as the hyperfaces, this time 
admitting also the symbol U for the union of sets. The 
points in E 5 and E 3 that are needed are described in 
Tables 1 and 2. The points in E 3 a r e  also illustrated in 
Figs. 1, 2, 3 and 4. 

Bearing in mind the one-to-one correspondence be- 
tween a genus and its Niggli image, we can use the 
symbols of the Niggli images of genera also for the 
genera themselves. These symbols (of all 127 genera) 
can be found in Tables 3 and 4. They are placed in the 
column 'Genus'. The preceding column 'Description' 
serves to determine the fundamental system of the Niggli 
image of the genus. We must only add to the inequalities 
from this column one of the inequalities from (14) 

* Meaning that any hyperface from H contains the same number (zero 
included) of Buerger points of LI and L2. 
t Meaning that if aj, bj, cj (j  = 1, 2) are Niggli bases of Li and L2 
and if 

~pi(a l ,b l ,Cl) ,  ~; ' i (al ,bl ,Cl) ,  \ i ( a l , b l , c l )  ( i :  1 . . . . .  q) 

are all Niggli bases of Li then 

,,~i(a2, b2, c2), c'i(a2, b2, c2), \ i (a2,  b2, c2) (i = 1 . . . . .  q) 

are all Niggli bases of L2. 

according to the index that stands as a subscript in the 
symbol of the genus. 

The Niggli images of all genera can be seen in 
their three-dimensional intersections (when u, v are kept 
constant) in Figs. 1, 2, 3 and 4. These figures stand for 
a certain illustration of genera giving at least a limited 
insight into the relationships between them. 

Example. Following Fig. 3 and Table 2, we find 
that the symbol G O F ~  3 denotes the set of points (3) 
fulfilling 

u < v :  1, 

O < x < y < z < u .  

In a similar way, we find the inequalities 

u < v - -  1, 

0 < y < x < l ,  

y < z < u  

for the symbol G J O F @ S  3. Thus the Niggli image of 
the genus 

G O F A  3 U GJOF(:-)S 3 (28) 

(see Table 3, entry 54) is the set of points (3) fulfilling 

u < v = l ,  

0 < x <  1, x C y ,  

O < y < z < u ,  

which is in agreement with the column 'Description' 
and with (14). 

Table 2 further shows that G O F A  3 is a four- 
dimensional hyperpolyhedron with the vertices 1, 2, 4, 
6, 10 and G J O F O S  3 also such a hyperpolyhedron with 
the vertices 1, 2, 3, 4, 7, 8, 10 both open with respect 
to the dimension 4. It follows that the Niggli image 
of the genus (28) may be conceived as an open four- 
dimensional hyperpolyhedron with the vertices 1, 2, 3, 
4, 6, 7, 8, 10 without the points of the three-dimensional 
polyhedron with the vertices 1, 2, 4, 10. 

11. Determining the genus of a given lattice 

This can be comfortably done by means of Table 3 or 
Table 4. These tables summarize our main results. 

Given a lattice L by means of the parameters of 
one of its primitive cells, we determine first its Niggli 
point (3) according to Appendix A. We decide whether 
this point is positive (x > 0) or non-positive (x <_ 
0) and according to it apply either Table 3 or Table 
4, respectively. Then we compare the requirements of 
the column 'Determination' with the coordinates of 
the Niggli point. This must be done going through 
the entries of the table from the beginning and in the 
order in which they follow in the table. Then the first 
agreement gives the genus we are seeking. Its symbol 
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Table 3. Determining the genus: posit ive Niggli points 

The Niggli point (3) of the lattice fulfils x > 0. The first agreement of the values u, v, x, y, z with the conditions in the column 'Determination' 
determines the genus. Remark: The inequalities in the column 'Description' together with that inequality in (14) whose index is equal to the 
subscript of the genus symbol check the result. Notation: Ni Niggli lattice character; De Delaunay sort of symmetry; Br Bravais type. 

Determination 
u v x y z Extra Description Genus Ni De Br Conv. cell 

1 1 1 1 1 x = y = z =  1 Ji  1 K 2 c F  ]11 1]1 l l i  
i 1 x x x = y = z ,  J O  I 2 R 2 h R  100 010 001 

0 < x < l  
u u u u x = y = z = u J2 9 R 2 h R  001 i01 0] 1 

1 1 x 1 x = y ,  z = 1, J F  1 10 M 3 m C  110 1 ] 0  00i 
0 < x < l  

1 1 x x = y ,  J O F  l 10 M s m C  110 I ] 0  00] 
0 < x < z < l  

u u u x = y = u, JqJ2 10 M z m C  110 1 ]0 00] 
0 < z < u  

u x u x = y , z = u ,  J F  2 10 M 3 m C  110 l i0  00i 
0 < x < u  

u x x x = y = z ,  J O  2 10 M s m C  110 1 ]0 00i 
0 < x < u  

u x x < z x = y ,  J O F  2 10 M s m C  110 l i0  00i 
O < x  < z  < u  

u x x = y ,  JOqJ 2 10 M 2 m C  110 1 ]0 001 
O < Z < X < U  

1 1 1/2 1 1 2 x = y  = Z =  1 F~ 18 Q~ t l  01] 1]] 100 
1 u / 2  u u 2 x = y  = z = u  F 3 18 QI t l  01i lii  100 

1 I 1 I y = z = 1 ,  F J  I 19 02 o l  100 01i l i i  
1/2 < x <  1 

1 1 u u x = 1, J3 19 O 3 o l  100 01i lii  
y = z : u  

1 u u u x = y = z = u  G 3 19 0 4 Ol 100 01i l i i  
1 U U X < U  y = Z = U ,  F G  3 19 02 o l  100 01i lii  

u/2 < x < u 
1 u u y = z = u ,  G J  3 19 03 o l  100 01i lii  

u < x < l  
1 1 y y = z ,  J O A  l 20 M 2 m C  011 011 i00 

0 < x < y < l  
1 1 y x =  1 , y  = z ,  J~73 20 M 3 m C  011 01i i00 

0 < y < u  
1 x x x = y = z ,  GO 3 20 M 5 m C  011 01i i00 

0 < x < u  
1 y x < y y = Z, G O A  3 20 M 2 m C  011 01 i ]00 

O < x < y < u  

1 y y = z < u,  GJO,U s 20 M 3 m C  011 01 i ]00 
0 < y < x < l  

u u / 2  u u 2x  = y = z = u F 2 26 O~ o F  100 120 102 
u / 2  u u 2x  = y = z = u F 4 26 01 o F  100 120 102 

u u u y = z = u,  F J  2 27 M 2 m C  120 i00 01i 
u/2 < x < u 

V U U X = V, J4 27 M 3 m C  120 ]00 01 ] 
y = z = u  

u u u x = y = z = u G 4 27 M s m C  120 i00 01 i 
u a x < u y = z = u,  F G  4 27 M 2 m C  120 ]00 01i 

u/2 < x < u 

u u y = Z = u,  G J  4 27 M 3 m C  120 i00 01 ] 
U < X < V  

u u 2x  2x  = z, y = u,  F A  2 28 M I m C  100 102 0i0 
0 < z < u  

u 2x  2x  = z , y  = u,  F A  4 28 M I m C  100 102 0i0 
0 < z < u  

1 1 2 x  1 2 x  = y ,  z = 1 ,  F F  1 29 M I m C  100 120 00i 
0 < y < l  

u 2x  u 2x  = y ,  z = u,  F F  2 29 M I m C  100 120 00] 
0 < y < u  

1 2x  u 2x  = y ,  z = u,  F F  3 29 M I m C  1 O0 120 OOi 

0 < y < u  
2x  u 2x  = y , z  = u,  F F  4 29 M I m C  100 120 00i 

0 < y < u  
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Table 3 (cont.) 

Determination 
v x y 

1 1 u / 2  

1 1 

v u/2 

v 

1 

1 

u 

u u 

u u 

U u 

u 

u 

1 1 

1 1 

1 x 

1 

1 

1 x 

1 

V u 

v 

v 

v 

v 

u 

u 

U 

x 

Z 

u 

2y 

Extra 

u 

2y 

1 

u 

x 

X < Z  

u 

u x < y  

U 

u 

Y 

y < z  

x 

X < Z  

u 

u x < y  

u 

x 

Description Genus Ni 

x----- 1, H 3 30 
2 y = z = U  

x = 1,2y = z, H~73 30 

0 < z < u  
x = v, /'/4 30 
2 y : z ¼ u  
x = v, 2y = z, H,U 4 30 

0 < z < u  
z = 1, F J F  l 31 
y / 2  < x  < y  < 1 
0 < x < y,  J O F A  l 31 

y < z < l  
z = u, F J F  2 31 

y / 2 < x < y < u  
x = z , y  = u, J A  2 31 

0 < x < u  
y = u, F J A  2 31 

z / 2  < x  < z  < u  
y = u, JAq/2  31 

O < z < x < u  
x = z, J O A  2 31 

O < x < y < u  
x - ~ z ,  * 31 
O < x < y < u ,  

0 < z < u  
x =  1 , z = u ,  HJ  3 31 

u /2  < y < u 
x = 1, HJ,U, 3 31 
z / 2 < y < z < u  
x : y , z = u ,  G F  3 31 
0 < X < U  
z = u, F G F  3 31 

y / 2 < x < y < u  
y < z = u, G J F 6 )  3 31 
0 < y < x < l  
x = y, GOC 3 31 

O < x < z < u  
x ~ : y ,  t 31 
0 < x < l ,  
O < y < z < u  
x --- v , y  ---- u, Jq/4 31 

0 < z < u  
x = v , z  = u, HJ4 31 

u /2  < y < u 
x = v , y  = z, J E  4 31 

0 < y < u  
x = v, H J ~ 4  31 

z / 2 < y < z < u  
x = v, J~Tq/4 31 

O < z < y < u  
x = z , y = u ,  G A  4 31 
0 < x < u  
y = u, F G A  4 31 

z / 2  < x  < z  < u  
z < y = u, G J A ~  4 31 
O < z < x < v  
x = y , z = u ,  G F  4 31 

0 < x < u  
z = u, F G F 4  31 

y / 2 < x < y < u  
y < z = u, GJF(94 31 

0 < y < x < v  
x = y = z ,  GO4 31 

0 < x < u  

De Br 

Ml m C  010 

MI m C  010 

M1 m C  010 

M l m C  010 

T l a P  100 

T 1 a P  100 

T l aP  100 

T 2 a P  100 

1"1 a P 100 

T I a P  100 

T 2 aP  100 

T l a P  100 

Conv. cell 

012 

012 

010 

010 

010 

010 

010 

010 

010 

010 

i00  

i00  

ioo 

i00  

001 

001 

001 

001 

001 

001 

001 

001 

T 1 a P  100 010 001 

T~ a P  100 010 001 

T 2 a P  100 010 001 

T~ a P  100 010 001 

T~ aP  100 010 001 

T 2 a P  100 010 001 

T~ a P  100 010 001 

T t a P  100 010 001 

T 2 aP  100 010 001 

T 1 a P  100 010 001 

Ti a P  100 010 001 

T 3 a P  100 010 001 

T l a P  100 010 001 

Tt a P  100 010 001 

T 2 aP  100 010 001 

Tt a P  100 010 001 

T~ aP  100 010 001 

T 2 a P  100 010 001 

T l aP  100 010 001 



516 CLASSIFICATION OF LATTICES 

Table 3 (cont.) 

Dete rmina t ion  
u v x y z Ext ra  Descr ip t ion  Genus  Ni De Br 

x x < z goto  & 

x x < y goto  & 

y y < x goto  & 
& x = y ,  ++ 31 T 2 aP 100 010 001 

O < x < z < u  
or  

x~---z, 

O < x < y < u  
or  

y : z < u ,  
O < y < x < v  
x < y < u, § 31 T 1 aP I00  010 001 

O < x < z < u  
or 

y < x < v ,  
O < y < z < u  
or  

z < x  < k', 

O < z < y < u  

* JOAtl/2 U JOFz3A 2. t G O F A  3 U GJOI'(:)273. ~ GO1-" 4 U GOA 4 U G J O ~  4. § G O F A  A4 U GJOF6)274 U GJOA,Uq/4. 

Conv.  cell  

is in the column 'Genus'. The column 'Description' 
and the proper alternative from (14) check our result. 
Further columns in Tables 3 and 4 determine the Niggli 
character, the Delaunay sort of symmetry and the Bravais 
type of the lattice L. In the last column, the conventional 
cell is given. The matrices relate to a Niggli basis but, 
of course, are not unique. 

Example. Suppose that the lattice L has the Niggli 
point 

[0.6, 0.6, - 0.24, - 0.42, - 0.54]. (29) 

Going through Table 4, we stop at the 17th entry. It 
shows that the lattice L belongs to the genus LRU 2. The 
inequalities from the column 'Description' 

2 u + x + y + z = O ,  

- u < y < x ,  - u < z  

together with the inequality indicated by the index 2, i.e. 

0 < u - v < l ,  

form the fundamental system of the genus LRU e. This 
system is fulfilled by the Niggli point (29), which verifies 
the finding. Table 4 further shows that the lattice L is 
monoclinic face centered and belongs to the Delaunay 
sort M 2 and to the Niggli character 17. The vectors a - b ,  
a + b, - a  - c determine the conventional cell. 

12. Classification of lattices 

Detailed mutual relationships between the four divisions 
can be obtained from Table 5. All genera belonging 
to a given Bravais type, Delaunay sort or Niggli char- 
acter are immediately seen. In particular, the explicit 
relations between the Delaunay sorts and the Niggli 
characters, which had not been previously established, 

are ascertained. Conspicuous is the great number of 
genera forming the mC and aP Bravais types (43 in 
both cases). 

13. Building stones 

The way in which the genera were defined and their 
fairly great number enable us to use them as building 
stones for constructing various other divisions of lattices. 

For example, the 'minimum common subdivision' of 
the Delaunay sorts and the Niggli characters (i.e. having 
the smallest number of classes) is a superdivision of 
genera. From Table 5, it follows that this division has 
57 classes. Among them 28 coincide with a genus and 
have open parameter ranges. The remaining 29 classes 
consist mostly of 2 but also of 3, 4, 6, 8 and 20 genera, 
however, their parameter ranges are not open. All classes 
may be described by the symbols of their genera. 

In a similar way, we can ascertain that the (otherwise 
unimportant) division of lattices according to Definition 
2, which has been already mentioned, has 115 classes. 
Of these, 106 coincide with a genus, 6 consist of two 
and 3 of three genera. In particular, the class described 
previously by the inequalities (25) is a union of the 
genera G O A  3, GJO~3, GO 3 and the class described by 
(26) a union of the genera RT 1, TU I. 

14. Extension 

From a sensible division of an arbitrary set, we usually 
expect that the elements belonging to the same equiva- 
lence class are in some way related, that they have some 
properties in common. These elements agree, of course, 
automatically in those properties according to which the 
division was made. If they agree ( 'by chance') also in 
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Table  4. Determining the genus: non-positive Niggli points 

The Nigg l i  po in t  (3) o f  the lat t ice fulfils x < 0. Fu r the r ,  s = u + v + x + y + z and w = v + x - y is set. Then  the first ag r eemen t  o f  the va lues  
u, v, x, y, z, s, w wi th  the condi t ions  in the c o l u n m  ' D e t e r m i n a t i o n '  de t e rmines  the genus.  Remark :  as in cap t ion  to Table  3. 

D e t e r m i n a t i o n  
v x y z 

1 0 0 0 
1 x x 

1 x x 

1 

1 

1 

u 0 
1 0 

u 0 

1 0 

u 0 

U - - U  

U 

1 

u 

u 

u 

1 0 
1 - 1  

1 

1 

1 0 

1 

1 0 

1 

1 

0 
- - V  

u 0 

0 

u 0 

0 

0 0 
0 - 1  

0 --u 

0 

0 

- - u  0 

x 

x 

x 0 

x 

0 0 
0 0 

0 0 

Y 

Y 

Y 

Y 

Y 

y "  

0 0 
0 0 

0 0 

- u  0 

- u  0 

0 

0 

s w Desc r ip t ion  Genus  Ni De Br Conv .  cel l  

x = y = z = 0 O,  3 1(,3 c P  100 010 001 
0 x = y = z ,  Ti 5 K 1 c l  011 101 110 

x = - 2 / 3  
x = y = z ,  O T  1 4 R I h R  100 010 001 
- 2 / 3  < x < 0 

0 x = y,  s = O, R T  I 6 QI t l  101 011 110 
- 1  < z < - 2 / 3  

0 y = z, s = O, T U  1 7 Q1 t l  110 101 011 
- 2 / 3  < x < 0 

0 s = O, R T U  I 8 0 2  o l  110 101 011 
- 1  < z  < y  < x  

x = y = z = 0 0 2  11 Q3 t P  100 010 001 
x = y = 0, Z 1 12 H h P  100 010 001 

z =  - 1  
x = y = 0, 7_, 2 12 H h P  100 010 001 

Z ~ - - U  

x = y = O, O Z  1 13 O 5 o C  110 1 i 0  001 
- 1  < z < 0  
x = y = 0, 07_, 2 13 O 5 o C  110 1 ] 0  001 

- u < z < 0  
x = y = - u ,  L 2 15 Q2 t l  100 010 112 

z = 0  
0 x - - y , s = O ,  LR 2 16 O l o F  110 l i0 112 

- - u < z < 0  
x = y < 0 < s,  O R T Z  1 14 M 1 m C  110 i l 0  001 
- 1  < z < y  

x = y , z  = 0, L O  2 14 M 4 m C  110 ]10  001 
- u < x < 0  
x - - - y  < 0 < s,  L O R Z  2 14 M l m C  110 i l 0  001 
- u < z < 0  

0 s = 0 , - u  < z, LRU2 17 M 2 m C  l i 0  110 ioi 
- u  < y  < x  
x = y = Z = 0 03 21 Q3 t P  010 001 100 
x = - 1 ,  X 3 22 H h P  010 001 100 

y = z = 0  
y : z = 0 ,  O X  3 23 05 o C  011 01 ]  100 
- 1  < x < 0  _ _ _  

0 u x = - 1  + u / 3 ,  T 3 24 R 1 h R  010 001 111 
y = z = - 2 u / 3  

x = O , y = z ,  O U  1 25 M 4 m C  011 0il  100 
- 1  < y < 0  
y = z < x,  OTU 1 25 M 1 m C  011 0 i  I 100 
x < 0 < s  
x = 0,y = z, OU3 25 M4 mC 011 0il  100 
- u < y < 0  

0 y = z, s = 0, TV 3 25 M 1 m C  011 0 i l  100 
- u  < y < - 2 u / 3  

- u  < y  : z  < O, O Q U V X  3 25 M i  m C  011 0 ] l  100 
- 1  < x < 0 < s  
x = y  = z = 0 04 32 06 o P  100 010 001 
x = - v ,  X 4 40 05 o C  010 012 100 
y = z = 0  
y = z = 0, O X  4 35 M 6 m P  010 100 001 
- v < x < 0  
x = z = 0, Y2 36 05 o C  100 102 010 
y = - u  

x = z = 0,  Y4 36 05 o C  100 102 010 
y = - u  

x = z = O, O Y  2 33 M 6 m P  100 010 1301 
- u < y < 0  
x = z = 0, O Y  4 33 M 6 m P  100 010 001 
- u < y < 0  



5 1 8 CLASSIFICATION OF LATTICES 

Table 4 (cont . )  

Determination 
v x y z s w Description 

1 0 0 - u  x = y  = 0 ,  

z = - u  
0 0 - u  x = y  = 0 ,  

z = - u  
1 0 0 x = y = 0 ,  

- u < z < 0  
0 0 x = y  = 0 ,  

- - u < z < O  
--V --U 0 X : --V, 

y =  - u , z = O  
- v  0 x : - v ,  z : O, 

- u < y < O  
u - u  0 y = - u , z  = O, 

- u < x < O  
- u  0 y = - u , z  = O, 

- - V < X < 0  
1 0 --U y = 0, Z = --U, 

--1 < X < 0  
0 --U y = 0 ,  Z =  --U, 

- - F < X < 0  
1 0 U S----0,  

y + U = X + I ,  
--U < Z < --2U/3 

0 U S = 0 ,  
y + U = X + V ,  
- - U < Z < 0  

1 0 X = 0 ,  
--1 < z < y < 0  

1 --1 < z < y ,  
y < x < O < s  

U 0 --U < y  < X = 0 ,  
- - U < Z < 0  

U 0 Z = 0 ,  
- - u < y < x < O  

U - - u < y < x < O ,  

- - u < z < O < s  
1 0 x = O ,  

- - u < z < y < O  
1 0 - 1  < x < y = 0 ,  

- - u < z < 0  
l 0 s = 0 ,  

y + u < x + l ,  
- - u < z < y  

l --1 < x < 0 < s ,  

- u < z < y < O  
0 - u  < y  < x = 0 ,  

- - u < z < 0  
0 - v < x < y = O ,  

- - u < z < 0  
0 - v < x < z = O ,  

- u < y < 0  
0 s = 0 ,  

y + u < x + v ,  

- u  < y,  - u  < Z 
- -V<x<O<s ,  
- - u < y < O ,  
- - u < z < 0  

~; KLOUVXrZ,. * LORUY7~. t KOQUVXZ~. 

Genus Ni De Br 

Z 3 38 05 o C  

Z 4 38 O 5 o C  

OZ 3 34 M 6 m P  

O Z  4 34 M 6 m P  

L 4 42 0 3 o l  

LX 4 41 M 3 m C  

L Y  2 37 M 3 m C  

LY4 37 M 3 m C  

KZ 3 39 M 3 m C  

K Z  4 39 M 3 m C  

R T  3 43 M I m C  

LR 4 43 M 1 m C  

O U Z  1 44 T 2 a P  

O R T U Z  l 44 T l a P  

OUr7< 44 T2 ae 

L O Y 2 44 T 2 a e 

* 44 T I a P  

ovz3 44 r2 at' 

KOXZ3 44 T2 aP 

R T V  3 44 T I a P  

~f 44 T l a P  

O U]rZ 4 44 T 2 a P 

K O X Z  4 44 T 2 a P  

L O X Y  4 44 T 2 a P  

~ v ,  44 r~ at" 

~. 44 T I a P  

Conv. cell 

100 120 001 

100 120 001 

100 001 010 

100 001 010 

100 010 112 

012 OiO 100 

102 i00  010 

102 ]00 010 

120 100 001 

120 100 001 

l l 0  l l 2  ]00 

110 112 100 

100 010 001 

100 010 001 

100 010 001 

100 010 001 

100 010 001 

100 010 001 

100 010 001 

100 010 001 

100 010 001 

100 010 001 

100 010 001 

100 010 001 

100 010 001 

100 010 001 

some other properties, especially those that are important 
for the given problem, it is welcome.* 

* See the beginning of the section Introduction. 

What does the division of lattices into genera look 
like from this point of view? If two lattices belong to the 
same genus they agree, of course, in the properties (i), 
(ii), (iii) from Definition 3. These properties, however, 
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Table 5. Detailed relationships between particular divisions 

Notation: Br Bravais type; Ni Niggli lattice character; Ge genus; De Delaunay sort of  symmetry.  

Br Ni Ge De Br Ni Ge De 

c P  3 01 K 3 m C  27 J4 M3 
c l  5 T 1 K I m C  27 GJ 4 M 3 
cF  1 Ji K2 m C  27 G 4 
h P  12 Z 1 H m C  28 F A  2 M l 
h P  12 ~ H m C  28 F A  4 M l 

h P  22 X 3 H m C  29 FF1 M1 
hR 2 J O  l R 2 m C  29 F F  2 M 1 
hR 4 O T  1 R 1 m C  29 F F  3 M l 

hR 9 J2 R2 m C  29 F F  4 M l 
hR 24 T 3 R I m C  30 H a M 1 
tP  11 02 Q3 m C  30 H Z '  3 M 1 
tP  21 03 Q3 m C  30 H 4 M I 
t l  6 R T  1 Q1 m C  30 H •  4 M 1 
t l  7 TU 1 Ql m C  37 L Y  2 M 3 
t l  15 L 2 Q2 m C  37 L Y  4 M 3 
t l  18 F 1 Q1 m C  39 KZ 3 M 3 
t l  18 F 3 QI m C  39 g z  4 M 3 
oP  32 04 06 m C 41 Z X  4 M 3 

o C  13 O Z  1 0 s m C  43 R T  3 M 1 
o C  13 O Z  2 05 m C  43 LR 4 M l 
o C  23 O X  3 05 a P  31 F J F  I T 1 
o C  36 Y2 05 a P  31 J O F A  1 Tl 

o C  36 Y4 05 a P  31 F J  F z T I 
o C  38 Z_, 3 05 a P  31 F J A  2 T 1 
o C  38 Z 4 05 a P  31 J A t P  2 T 1 
o C  40 X 4 05 a P  31 * T l 
o l  8 R T U  I 02 a P  31 H J  3 T 1 
ol 19 FJ  I 02 a P  31 HJ ,~3 T1 
o l  19 F G  3 02 a P  31 F G  F 3 T l 

o l  19 "13 03 aP 31 GJ F(-) 3 T 1 
o l  19 GJ  3 03 a P  31 t T 1 
o l  19 G 3 04 a P  31 H J  4 T I 
o l  42 L 4 03 a P  31 HJ,U 4 T 1 
oF  16 LR 2 01 a P  31 J i l l  4 T 1 

oF 26 F 2 01 a P  31 J ~,tff 4 T 1 
o F  26 F4 01 a P  31 F G  F 4 T I 
m P  33 O Y  1 M 6 a P  31 F G A  4 T 1 

m P  33 O Y  4 M 6 a P  31 G J F @  4 T 1 
m P  34 O Z  3 M 6 a P  31 GJ  A ~4 TI 
m P  34 O Z  4 M 6 a P  31 ~ T I 
m P  35 O X  4 M 6 a P  31 J A  2 T 2 
m C  10 JtP 2 M 2 a P  31 J O A  z T 2 
m C  10 JOtP E M 2 a P  31 G F 3 T E 
m C  10 J F  1 M 3 a P  31 G O F  3 T 2 

m C  10 J O F  1 M 3 a P  31 G F  4 T 2 
m C  10 J F  2 M 3 a P  31 G A  4 T 1 
m C  10 J O F  2 M 3 a P  31 J T, 4 T E 
m C  10 J O  2 M 5 a P  31 § T 2 
m C  14 O R T Z  1 M t a P  31 G O  4 T 3 
m C  14 L O R Z  2 M 1 a P  44 O R T U Z  1 T l 
m C  14 L O  2 M 4 a P  44 L O R  UYZ 2 T I 
m C  17 LR U 2 M E a P  44 R TV 3 T 1 
m C  20 J O A t  M2 a P  44 K O Q U V X Z  3 T 1 
m C  20 GOA 3 M 2 a P  44 L R  V 4 T 1 
m C  20 J ~'3 343 a P  44 K L O U V X Y Z  4 T I 
m C  20 G JOg? 3 M 3 a P  44 O U Z  1 T 2 
m C  20 GO 3 M s a P  44 L O Y  2 T 2 
m C  25 O T U  1 M I a P  44 OUlrZ2 T 2 
m C  25 T V  3 M 1 a P  44 O U Z  3 T 2 

m C  25 O Q U V X  3 M I a P  44 K O X Z  3 T 2 

m C  25 O U  I M 4 a P  44 K O X Z  4 T 2 
m C  25 O U  3 M 4 a P  44 L O X Y  4 T 2 
m C  27 F J  2 ME a P  44 O U Y Z  4 T E 
m C  27 F G  4 M 2 

M5 

* JOAq/2  t_J J O F A A  2. "~ G O F A  3 t_J G J O F ~ . U  3. ~ G O F A A 4 U  G J O F ~ ) E  4 t..J GJOA.Uq/4.  § GOI"  4 U G O A  4 t..J GJO.~  4 . 
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can hardly be considered important for crystallography. 
But with a more detailed analysis we can gradually 
discover that lattices of the same genus agree in a sur- 
prisingly great number of properties of crystallographic 
importance. 

First, lattices of the same genus belong also to the 
same Delaunay sort, Niggli character and Bravais type. 
In this way, genera were constructed. However, the 
investigations that are now in progress show that lattices 
of the same genus also agree in the number of Buerger 
cells and in how many orientations these cells occur 
in the lattice. They further agree in the number of the 
densest directions and planes and in the symmetry of 
these planes. But even the formulae for the alternative 
Buerger cells and for the angles between the densest 
directions and planes are identical for all lattices of the 
same genus. The same can be said about the formulae 
giving the parameters of the conventional cell and the 
Delaunay quadruplets of vectors. 

Thus, the genus appears to be a remarkably strong 
bond between lattices, much stronger than its definition 
seems to suggest. It is mainly this fact that in our opinion 
justifies the construction of the genus concept. 

15. Proof 

The idea of the proof is this. We define the genera 
according to Definition 3. We make no other assumptions 
concerning the properties of genera, we do not even 
know their number. No symbols are used for them, in 
particular not the symbols from the column 'Genus' in 
Tables 3 and 4. We use the concept of the Niggli image 
of a genus but do not know the description ('fundamental 
systems') of these Niggli images. The system of the 
Niggli images of all genera is denoted N. Obviously, 
the union of all sets of the system N is the set H of all 
Niggli points. This is one side of the matter. 

On the other side, we introduce formally and inde- 
pendently of the above concepts special subsets of E 5 
called elementary regions. They are defined and denoted 
by means of Tables 3 and 4. Every entry of these 
tables determines an elementary region in the following 
way. In the column 'Genus', there is the symbol of the 
elementary region. The subscript of this symbol is called 
the index of this region. To the index there corresponds 
an inequality from (14). This inequality together with the 
inequalities from the column 'Description' then gives a 
full description of the elementary region. 

[For example, the 61st entry of Table 3 defines the 
elementary region F G A  4. It is the set of points (3) that 
f u l f i l z < y = u  < v <  1, z/2 < x <  z.] 

The three-dimensional intersections (u, v constant) of 
elementary regions can be seen in Figs. 1, 2, 3 and 4. 
According to what has just been said, there are altogether 
127 elementary regions. They are purely geometrical 
objects in E 5 and have hitherto nothing in common with 

the genera. The set of all elementary regions is denoted 
E. 

We verify the two following properties of elementary 
regions: 

(i) Any two elementary regions are disjoint. 
(ii) The union of all elementary regions is the set H 

of all Niggli points. 
This may be lengthy but can be done by simple 

manipulations with inequalities. The explicit description 
of the set H follows from the conditions (8) and (9). 
Figs. 1, 2, 3 and 4 may prove useful. So much for 
elementary regions. 

Now we put the two things together. The system N 
stands for a division of the set H into non-overlapping 
classes. The system E stands for a division of the set 
H into 127 non-overlapping classes. What interests us 
is the relation between the systems N and E. We prove 
the following two statements. 

(iii) If the Niggli points of the lattices L 1, L 2 lie in 
the same elementary region then L t , L 2 belong to the 
same genus. 

(iv) If the Niggli points of the lattices L 1, L e lie 
in different elementary regions then L~, L 2 belong to 
different genera. 

This must be verified for any particular elementary 
region and any particular pair of these regions. It is the 
most tedious part of the paper but the calculations are 
straightforward and cause no difficulties. Again, Figs. l, 
2, 3 and 4 are of great help. From (iii) it follows that: 

(v) Any elementary region is a part of the Niggli 
image of a genus. 

And from (iv): 
(vi) If E I, E 2 are two different elementary regions, E i 

being a part of the Niggli image of the genus G i (i = 
1, 2), then G I ¢ G 2. 

But the union of all elementary regions as well as 
the union of the Niggli images of all genera is the same 
set H. This is possible only if each elementary region 
coincides with the Niggli image of a genus and the 
genera are in this way exhausted. This means that the 
systems N and E are identical. 

In other words, the sets introduced in Tables 3 and 
4 in the columns 'Genus'and 'Description'* stand for 
Niggli images of all genera. Knowing this, we can more 
or less easily prove any statement we have pronounced 
in the previous text. 

16. Conclusions 

Having first examined some ideas for solving the prob- 
lem, we have eventually constructed a division of lattices 
into 127 classes called genera. They have open parameter 
ranges and form a subdivision of both the Niggli lattice 
characters and the Delaunay sorts of symmetry. The 
genus of a given lattice can be determined comfortably 

* Completcd by one of the inequalities in (14). 
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by means of an algorithm and a table. A suitable 
notation for the genera was introduced and their three- 
dimensional illustration found. The special feature of the 
division is a relatively great number of genera constitut- 
ing the mC and aP lattices (43 in both cases). A detailed 
relationship between the Bravais types, Delaunay sorts, 
Niggli characters and genera was ascertained. The fact 
that lattices of the same genus have a fairly great number 
of crystallographically significant properties in common 
came as a welcome surprise. 

A P P E N D I X  A 
How to find a Niggli point (K~iv:~ & Gruber,  1976) 

0. Choose an arbitrary primitive basis a, b, c of the 
lattice L. 

1. If lal > Ibl or (lal - Ibl, I b - c l  > la" cl), change 
a +--~ b. 

2. If Ibl > Icl or (Ibl = Icl, l a - e l  > la" bl), change 
b ~ c and go to 1. 

3. If neither a .  b > 0, a .  c > 0, b .  c > 0 nor a .  b _< 0, 
a .  c < 0, b .  c _< 0, change the sign of a. 

4. If neither a .  b > 0, a -  c > 
a - c  < 0, b .  c < 0, change 

5. If 2 lb .  c] > b 2 or ( 2 b - c  
( 2 b . c = - b  2 , a - b  < 0), 
and go to 1. 

6. I f 2 1 a . c l  > a 2 or ( 2 a . c  
( 2 a . c  = - a  2, a . b  < 0), 
and go to 1. 

0, b . c  > 0 nor a .  b <_ 0, 
the sign of b and go to 3. 
= b 2, 2 a - c  < a .  b) or 

let c := c -  [sgn(b. c)]b 

= a 2, 2 b .  c < a .  b) or 
let c := c -  [sgn(a.  c)]a 

7. If 2la • b I > a 2 or ( 2 a - b  -- a 2, 2 b .  c < a .  c) or 
( 2 a - b  = - a  2, a .  c < 0), let b := b - [sgn(a.  b)]a 
and go to 1. 

8. L e t K : = a  2 + b  2 + 2 a . b + 2 a . c + 2 b . c .  
9. I f K  < 0 o r  ( K =  0, a 2 + 2 a . c  > b 2 + 2 b . c ) , l e t  

c := a + b + c  and go to 1. 
10. Let u := a2/c  2, v := b2/c 2, x := 2 b . c / c  2, 

y := 2 a .  c /c  2, z := 2 a .  b / c  z. 

Then [u, v, x, y, z] is the Niggli point of the lattice L. 

A P P E N D I X  B 
How to determine all Buerger points of  a lattice 

A Buerger point is derived from a Buerger cell. Thus 
we have first to ascertain all Buerger cells of the given 
lattice L. These cells may be found according to Gruber 
(1973, 1989). Secondly, having a particular Buerger cell 
B of L, we have to find all Buerger points that follow 
from B. If (3) is such a Buerger point, then there exist 
vectors (1) that determine the cell B and fulfil (22). Any 

permutation of the vectors (1) as well as the change of 
sign of any of them determines also the cell B. In this 
way, we get a set of at most 24 points that contains 
(besides other points) all Buerger points of L that can 
be derived from the cell B. We have only to check the 
conditions (23) and (24). Special relations usually make 
it unnecessary to construct all the above 24 points. 

A P P E N D I X  C 
How to find all Niggli bases of  a 
lattice if one of them is known 

First, they can be found in the Comments (Gruber, 
1978a,b; Tables Ilia, b, c, d). If the Comments are not 
at hand, we take into consideration the fact that the 
transformation matrix between the given Niggli basis 
and another Niggli basis of the same lattice consists 
only of the numbers - 1 ,  0, 1 (Gruber, 1970). This gives 
a finite number of possibilities. Again, special relations 
reduce the number of alternatives that are to be checked. 

The paper was prepared in a close collaboration with 
H. Wondratschek (Karlsruhe). He suggested the original 
hyperfaces idea and raised the question of 'asymmetry '  
showing its solution. He also formulated some state- 
ments in the text. The author expresses deep gratitude 
for his lasting interest, help and encouragement. He also 
thanks the referee for improving the style of the paper. 
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